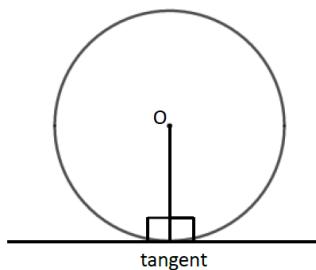
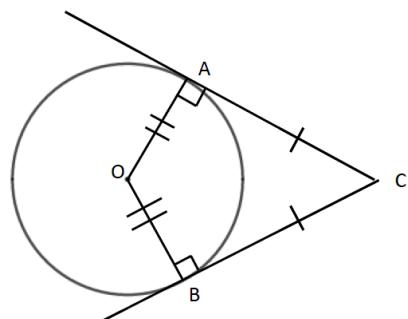
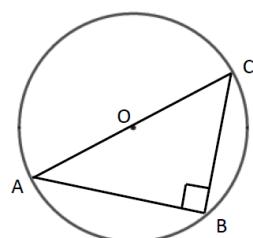

Circle theorems

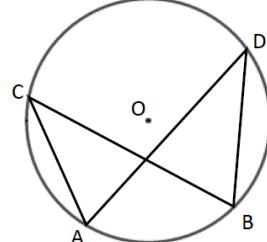
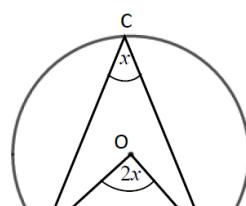
A LEVEL LINKS


Scheme of work: 2b. Circles – equation of a circle, geometric problems on a grid

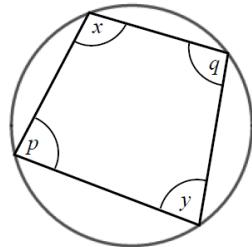
Key points


- A chord is a straight line joining two points on the circumference of a circle.
So AB is a chord.

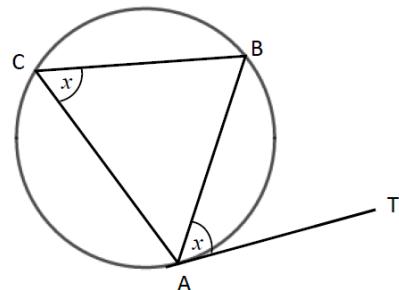

- A tangent is a straight line that touches the circumference of a circle at only one point.
The angle between a tangent and the radius is 90° .



- Two tangents on a circle that meet at a point outside the circle are equal in length.
So $AC = BC$.

- The angle in a semicircle is a right angle.
So angle ABC = 90° .

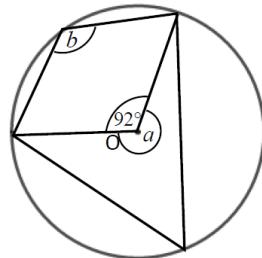


- When two angles are subtended by the same arc, the angle at the centre of a circle is twice the angle at the circumference.
So angle AOB = $2 \times$ angle ACB.
- Angles subtended by the same arc at the circumference are equal. This means that angles in the same segment are equal.
So angle ACB = angle ADB and



angle CAD = angle CBD.

- A cyclic quadrilateral is a quadrilateral with all four vertices on the circumference of a circle. Opposite angles in a cyclic quadrilateral total 180° . So $x + y = 180^\circ$ and $p + q = 180^\circ$.



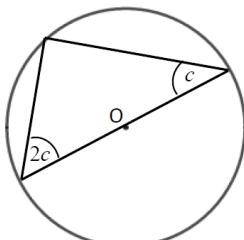
- The angle between a tangent and chord is equal to the angle in the alternate segment, this is known as the alternate segment theorem. So angle BAT = angle ACB.

Examples

Example 1 Work out the size of each angle marked with a letter.
Give reasons for your answers.

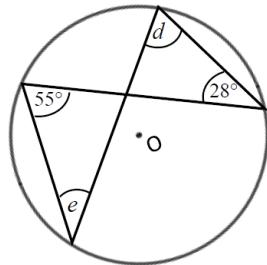
$$\begin{aligned} \text{Angle } a &= 360^\circ - 92^\circ \\ &= 268^\circ \end{aligned}$$

as the angles in a full turn total 360° .

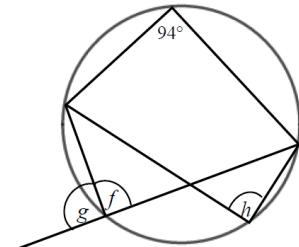

$$\begin{aligned} \text{Angle } b &= 268^\circ \div 2 \\ &= 134^\circ \end{aligned}$$

as when two angles are subtended by the same arc, the angle at the centre of a circle is twice the angle at the circumference.

1 The angles in a full turn total 360° .


2 Angles a and b are subtended by the same arc, so angle b is half of angle a .

Example 2 Work out the size of the angles in the triangle.
Give reasons for your answers.


<p>Angles are 90°, $2c$ and c.</p> $90^\circ + 2c + c = 180^\circ$ $90^\circ + 3c = 180^\circ$ $3c = 90^\circ$ $c = 30^\circ$ $2c = 60^\circ$ <p>The angles are 30°, 60° and 90° as the angle in a semi-circle is a right angle and the angles in a triangle total 180°.</p>	<p>1 The angle in a semicircle is a right angle.</p> <p>2 Angles in a triangle total 180°.</p> <p>3 Simplify and solve the equation.</p>
--	---

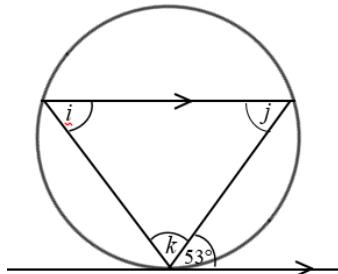
Example 3 Work out the size of each angle marked with a letter.
Give reasons for your answers.

<p>Angle $d = 55^\circ$ as angles subtended by the same arc are equal.</p> <p>Angle $e = 28^\circ$ as angles subtended by the same arc are equal.</p>	<p>1 Angles subtended by the same arc are equal so angle 55° and angle d are equal.</p> <p>2 Angles subtended by the same arc are equal so angle 28° and angle e are equal.</p>
---	---

Example 4 Work out the size of each angle marked with a letter.
Give reasons for your answers.

<p>Angle $f = 180^\circ - 94^\circ$ $= 86^\circ$ as opposite angles in a cyclic quadrilateral total 180°.</p>	<p>1 Opposite angles in a cyclic quadrilateral total 180° so angle 94° and angle f total 180°.</p>
---	--

(continued on next page)

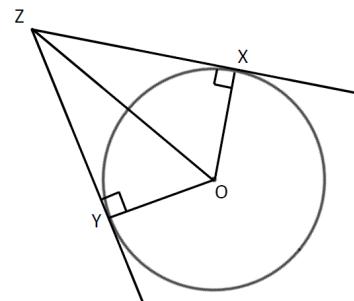

Angle $g = 180^\circ - 86^\circ$
 $= 84^\circ$
 as angles on a straight line total 180° .

Angle $h = \text{angle } f = 86^\circ$ as angles subtended by the same arc are equal.

2 Angles on a straight line total 180° so angle f and angle g total 180° .

3 Angles subtended by the same arc are equal so angle f and angle h are equal.

Example 5 Work out the size of each angle marked with a letter.
 Give reasons for your answers.


Angle $i = 53^\circ$ because of the alternate segment theorem.

Angle $j = 53^\circ$ because it is the alternate angle to 53° .

Angle $k = 180^\circ - 53^\circ - 53^\circ$
 $= 74^\circ$
 as angles in a triangle total 180° .

- 1 The angle between a tangent and chord is equal to the angle in the alternate segment.
- 2 As there are two parallel lines, angle 53° is equal to angle j because they are alternate angles.
- 3 The angles in a triangle total 180° , so $i + j + k = 180^\circ$.

Example 6 XZ and YZ are two tangents to a circle with centre O.
 Prove that triangles XZO and YZO are congruent.

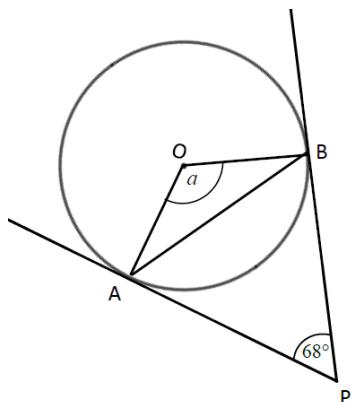
Angle $OXZ = 90^\circ$ and angle $OYZ = 90^\circ$ as the angles in a semicircle are right angles.

OZ is a common line and is the hypotenuse in both triangles.

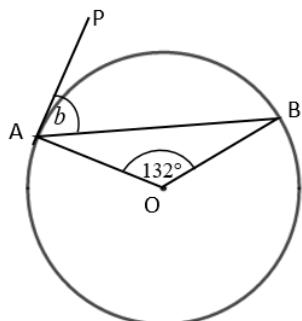
$OX = OY$ as they are radii of the same circle.

So triangles XZO and YZO are congruent, RHS.

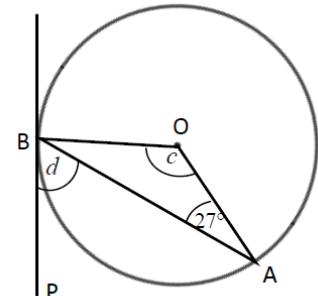
For two triangles to be congruent you need to show one of the following.

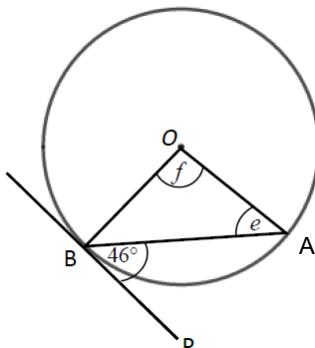

- All three corresponding sides are equal (SSS).
- Two corresponding sides and the included angle are equal (SAS).
- One side and two corresponding angles are equal (ASA).
- A right angle, hypotenuse and a shorter side are equal (RHS).

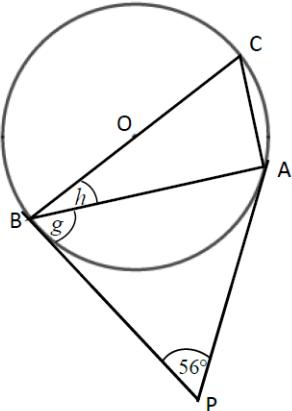
Practice


1 Work out the size of each angle marked with a letter.

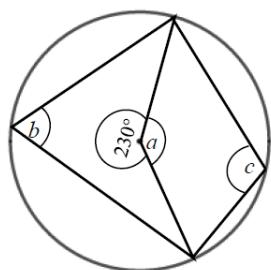
Give reasons for your answers.

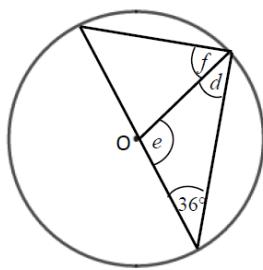

a


b

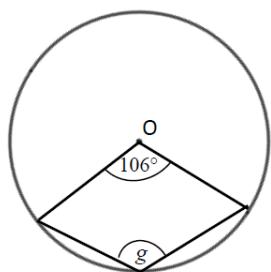

c

d

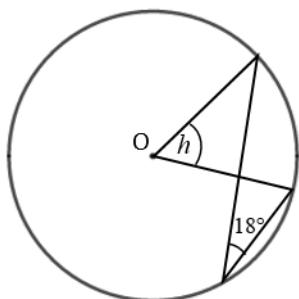

e


2 Work out the size of each angle marked with a letter.

Give reasons for your answers.


a

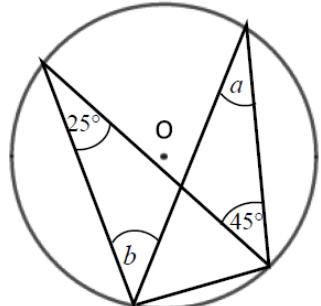
b


c

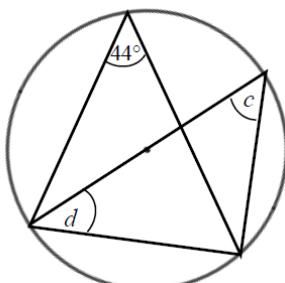
Hint

The reflex angle at point O and angle g are subtended by the same arc. So the reflex angle is twice the size of angle g .

d

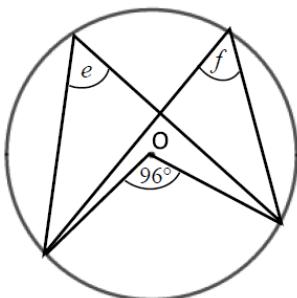


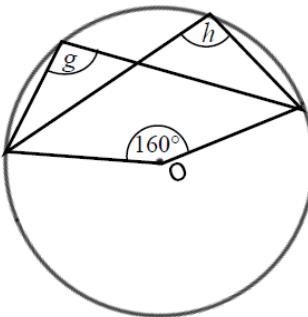
Hint


Angle 18° and angle h are subtended by the same arc.

3 Work out the size of each angle marked with a letter. Give reasons for your answers.

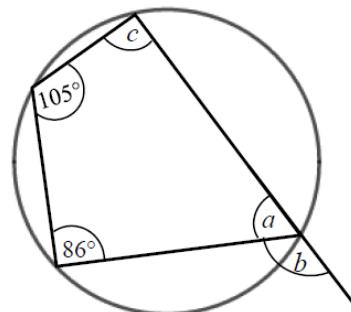
a


b


Hint

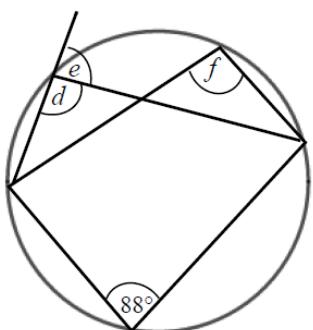
One of the angles is in a semicircle.

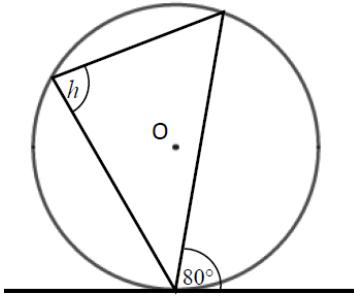
c



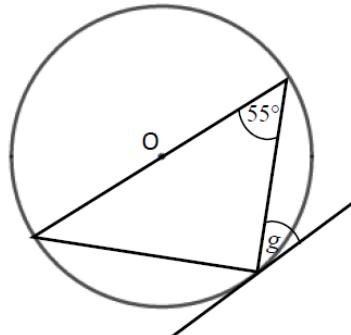
d

4 Work out the size of each angle marked with a letter.
Give reasons for your answers.


a


Hint

An exterior angle of a cyclic quadrilateral is equal to the opposite interior angle.


b

c

d

Hint

One of the angles is in a semicircle.

Extend

5 Prove the alternate segment theorem.

Answers

1 **a** $a = 112^\circ$, angle OAP = angle OBP = 90° and angles in a quadrilateral total 360° .

b $b = 66^\circ$, triangle OAB is isosceles, Angle OAP = 90° as AP is tangent to the circle.

c $c = 126^\circ$, triangle OAB is isosceles.

$d = 63^\circ$, Angle OBP = 90° as BP is tangent to the circle.

d $e = 44^\circ$, the triangle is isosceles, so angles e and angle OBA are equal. The angle OBP = 90° as BP is tangent to the circle.

$f = 92^\circ$, the triangle is isosceles.

e $g = 62^\circ$, triangle ABP is isosceles as AP and BP are both tangents to the circle.

$h = 28^\circ$, the angle OBP = 90° .

2 **a** $a = 130^\circ$, angles in a full turn total 360° .

$b = 65^\circ$, the angle at the centre of a circle is twice the angle at the circumference.

$c = 115^\circ$, opposite angles in a cyclic quadrilateral total 180° .

b $d = 36^\circ$, isosceles triangle.

$e = 108^\circ$, angles in a triangle total 180° .

$f = 54^\circ$, angle in a semicircle is 90° .

c $g = 127^\circ$, angles at a full turn total 360° , the angle at the centre of a circle is twice the angle at the circumference.

d $h = 36^\circ$, the angle at the centre of a circle is twice the angle at the circumference.

3 **a** $a = 25^\circ$, angles in the same segment are equal.

$b = 45^\circ$, angles in the same segment are equal.

b $c = 44^\circ$, angles in the same segment are equal.

$d = 46^\circ$, the angle in a semicircle is 90° and the angles in a triangle total 180° .

c $e = 48^\circ$, the angle at the centre of a circle is twice the angle at the circumference.

$f = 48^\circ$, angles in the same segment are equal.

d $g = 100^\circ$, angles at a full turn total 360° , the angle at the centre of a circle is twice the angle at the circumference.

$h = 100^\circ$, angles in the same segment are equal.

4 **a** $a = 75^\circ$, opposite angles in a cyclic quadrilateral total 180° .

$b = 105^\circ$, angles on a straight line total 180° .

$c = 94^\circ$, opposite angles in a cyclic quadrilateral total 180° .

b $d = 92^\circ$, opposite angles in a cyclic quadrilateral total 180° .

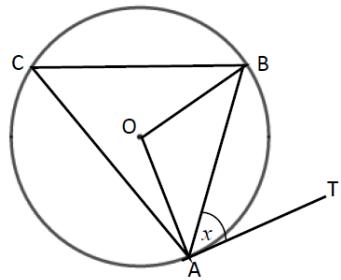
$e = 88^\circ$, angles on a straight line total 180° .

$f = 92^\circ$, angles in the same segment are equal.

c $h = 80^\circ$, alternate segment theorem.

d $g = 35^\circ$, alternate segment theorem and the angle in a semicircle is 90° .

5 Angle BAT = x .


Angle OAB = $90^\circ - x$ because the angle between the tangent and the radius is 90° .

OA = OB because radii are equal.

Angle OAB = angle OBA because the base of isosceles triangles are equal.

Angle AOB = $180^\circ - (90^\circ - x) - (90^\circ - x) = 2x$ because angles in a triangle total 180° .

Angle ACB = $2x \div 2 = x$ because the angle at the centre is twice the angle at the circumference.

